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Abstract. Parameterized synthesis offers a solution to the problem of construct-
ing correct and verified controllers for parameterized systems. Such systems oc-
cur naturally in practice (e.g., in the form of distributed protocols where the
amount of processes is often unknown at design time and the protocol must work
regardless of the number of processes). In this paper, we present a novel learning-
based approach to the synthesis of reactive controllers for parameterized sys-
tems from safety specifications. We use the framework of regular model check-
ing to model the synthesis problem as an infinite-duration two-player game and
show how one can utilize Angluin’s well-known L∗ algorithm to learn correct-
by-design controllers. This approach results in a synthesis procedure that is con-
ceptually simpler than existing synthesis methods with a completeness guarantee,
whenever a winning strategy can be expressed by a regular set. We have imple-
mented our algorithm in a tool called L∗-PSynth and have demonstrated its per-
formance on a range of benchmarks, including robotic motion planning and dis-
tributed protocols. Despite the simplicity of L∗-PSynth it competes well against
(and in many cases even outperforms) the state-of-the-art tools for synthesizing
parameterized systems.

Keywords: Parameterized Systems · Reactive Synthesis · Machine Learning ·
Angluin’s Algorithm · Regular Model Checking.

1 Introduction

Parameterized systems are systems with a parameterized number of components. Such
systems are ubiquitous in distributed and/or reactive systems, (e.g., where the number
of clients, the size of the environment, etc. can take arbitrary finite values and the cor-
rectness property must hold regardless of the assigned value). For example, in order to
verify safety/liveness of a Dining Philosopher Protocol with n philosophers, we need
to prove the property for each value of n ≥ 3. This is known as the parameterized
verification problem, which is undecidable even for safety properties [7].

Verification of parameterized systems has been the subject of many papers spanning
across four decades (e.g., see [9,3,49,47] for surveys). Many different techniques for
verifying parameterized systems have been proposed including cutoff techniques [9,4],
acceleration [3,2], learning [29,16,35,46,45], and abstractions [11], to name a few. The
problem of verifying safety property (i.e., bad things will never happen) has occupied a
lot of these research results, owing to its widely recognized importance.
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In this paper, we are interested in automatically synthesizing correct parameter-
ized systems with a safety guarantee. In this setting, parameterized systems are only
partially specified, and the task of a synthesis algorithm is to “fill in” the missing spec-
ification in such a way that the desired property is satisfied. Synthesis algorithms aim
to produce a correct-by-construction implementation of some formal properties in a
fully automatic fashion, thereby saving the need for performing a further verification
step. Program synthesis has been an active research area with many applications (e.g.,
to patch faulty parts of a system [43,25,1,22] or to fill the low-level details of a partial
implementation [40,42,41]). However, there has not been much work on synthesis for
parameterized systems with safety guarantee.

A common approach to the synthesis with a safety guarantee is by utilizing games,
more specifically a type of games called safety games. Safety games are two-player
games with safety objectives (i.e., the objective is to always stay inside a “safe” region).
Safety games have been widely applied in the context of verification and synthesis of
reactive systems. One example of their usage is for synthesis of safe controllers, such
as a vacuum cleaner robot that tries to avoid bumping into humans while cleaning the
room or a controller for a safety-critical system that maintains the temperature of a
power plant within a certain safe level. Safety games have been extensively studied
in many settings in the literature, both with finite-state arenas and infinite-state are-
nas, and including timed systems, hybrid systems, counter systems, and arenas gen-
erated by finite-state transducers. Some examples, among many others, can be found
in [23,35,34,13,44,17,18,14]. A parameterized system can naturally be construed as an
infinite-state system. Each parameter instantiation gives us a finite system, but there are
infinitely many such instantiations. The corresponding infinite-state system is a disjoint
union of all finite systems obtained from all possible parameter instantiations. This is
an undecidable problem; in fact, verifying safety properties (i.e. one-player games) is
already undecidable for parameterized systems [7]. There are a handful of generic meth-
ods and tools that have been designed in the past six years to handle safety games over
general infinite-state systems [8,35,26,34]. Examples include CONSYNTH [8], DT-
Synth [34], JSyn-VG [26], SAT-Synth [35], and RPNI-Synth [35], which have varying
degrees of automation and expressivity. For instance, the former three synthesis tools
(i.e., CONSYNTH, DT-Synth, and JSyn-VG) support safety games over arenas with
infinitely many vertices that are modeled using integer or real linear arithmetic. By con-
trast, the latter two tools (i.e., SAT-Synth and RPNI-Synth) work in a setting similar to
regular model checking [3,28], which encodes parameterized systems by means of reg-
ular languages and finite-state transducers. Since regular model checking is a popular
and highly expressive framework for modelling and verifying parameterized systems,
we follow the approach by SAT-Syth and RPNI-Synth throughout this paper.

Many of these aforementioned algorithms rely heavily on user guidance or are
highly intricate. CONSYNTH, for instance, requires the user to provide templates that
carry high-level information about possible solutions in order to prune the search space.
SAT-Synth, on the other hand, repeatedly solves an NP-complete problem (learning of
minimal finite-state machines from examples) and, hence, is computationally expen-
sive. In this paper, we thus provide a different and substantially simpler solution to
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the synthesis problem, which does not require user guidance and is computationally
efficient.

Contribution. The main contribution of this paper is to show how a simple exact learn-
ing algorithm for automata (e.g. Angluin’s L∗ algorithm [5]) can be employed effec-
tively for solving regular safety games in regular model checking [3], while remaining
competitive with existing tools for parameterized synthesis with safety properties. Fur-
thermore, we show the efficacy of our procedure in various problem domains including
path planning in a grid with adversaries, two-player zero-sum games (e.g. Nim), and
distributed protocols. We elaborate below why this is a challenging problem.

We first quickly recall the framework of exact learning of regular languages [5,27].
A learner’s goal is to learn an unknown regular language L (represented by minimal
DFA — deterministic finite automaton) with the guide of a teacher, who can answer a
membership query and an equivalence query. A membership query checks whether a
given word w ∈ Σ∗ is in L. On the other hand, an equivalence query asks whether the
language L′ := L(A) of a given DFA A coincides with L; if not, the teacher has to
return a counterexample w ∈ (L \ L′) ∪ (L′ \ L) to the learner. In her seminal paper
[5], she provided the so-called L* algorithm, which learns a DFA in polynomial-time4.
Different exact learning algorithms for automata are by now available that in practice
may outperform Angluin’s original algorithm, e.g., see [27].

Angluin’s exact learning of regular languages is conceptually simple, but when a
problem can be successfully modelled in this framework (e.g. see [15,16] for such ex-
amples in verification), one can tap into a wealth of efficient learning algorithms. When
employing this for infinite-state verification, the language L to be learned typically rep-
resents a kind of correctness proof (e.g. invariants). This is problematic because this is
not unique, which is necessary for a successful modelling in the exact learning frame-
work. The proposed strategy in this paper is to design the so-called strict but generous
teacher, which essentially drives the learner to learn the safe region reachable from
the set of initial states (which is unique) but accepts a different correct proof from the
learner. For this idea to work, a membership query (asking whether a given config-
uration is reachable and in a safe region) should not be an undecidable problem. To
this end, we propose to consider length-preserving transducers, which is known to be
sufficiently general [3]. With this restriction, we obtain a framework where member-
ship queries become decidable, and can in fact be checked using fast finite-state model
checkers.

We have implemented our approach in a tool called L∗-PSynth. We also provide
some case studies as benchmarks in order to evaluate our implementation. Some of the
case studies are taken from [35], while the rest are known games, or inspired by some
real world applications. Furthermore, we compare the performance of our tool (using
the provided benchmarks) against three existing sate-of-the-art tools: SAT-Synth, RPNI-
Synth [35] and DT-Synth [34]. Despite its simplicity, the tool competes well in practice
against the other three tools, and even in many cases, outperforms them.

4 The running time by definition accounts for the amount of time taken by the learner plus the
maximum size of the counterexamples provided by the teacher. We assume the teacher is an
oracle that can return an answer in constant time.
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Organization. We start with a couple of motivating examples in the next section. Sec-
tion 3 contains preliminaries. We describe the algorithm of our proposed approach in
Section 4. In Section 5, we provide some case studies and report the experiments to
measure the performance of our implementation against two existing tools. We con-
clude in Section 7.

2 Motivating Examples

Robotic motion planning example. Consider two robots inhabiting a bounded two-
dimensional grid world, one controlled by a controller/system that we wish to syn-
thesize, and the other controlled by the environment (which we do not control.) We call
this game “follow game”, which, later in Section 5, is also used as one of the bench-
marks. In this game, both robots move in alternating turns, and by one grid on each
turn. The goal of the game is to find (and synthesize) a strategy such that the robot con-
trolled by the system stays within a certain distance to the environment’s robot. We can
consider this game as an abstraction of some system in which some drones need to be
in close proximity to some moving targets. Such a strategy thus can be synthesized as a
controller for the drones.

In order to abstract away from the details, we turn the area in which a drone oper-
ates into a bounded two-dimensional grid world, where a number of parameters (e.g.,
width, height, obstacle coordinates, etc.) can be taken into account. Every possible con-
figuration of a specific grid world, including the positions of the robots, is modeled by
a vertex in the game graph of a regular safety game. One snippet of such a graph for
a variation of the follow game is shown in Figure 1. Obstacles, i.e., inaccessible grids,
are marked black; the system’s robot (represented by Player 0) is depicted by a trian-
gle. and the environment’s robot (represented by Player 1) by a circle. A directed edge
between two grid worlds indicates that there is a possible action from current configu-
ration to reach the target configuration. Furthermore, all parameterizations are fixed at
runtime, and thus, there are no edges from a configuration into another configuration
with different parameters.

Notice that each of the configuration in a runtime can either be “safe”, i.e., the drone
is within an acceptable proximity to the target, or “unsafe”, i.e., beyond the proximity.
Figure 2 shows an automaton that parameterizes the grid world of the follow game by
encoding the positions of both robots as bit vectors. The first symbol indicates which
player is allowed to move their robot: [ 11 ] means Player 1 can move their robot, whereas
[ 00 ] indicates Player 0’s turn. The subsequent vector [ x1

x2
] encodes the x-coordinates of

Player 0’s and Player 1’s robots in the unary numeral system number, respectively,
followed by a separating symbol S and [ y1

y2 ] which encodes the y-coordinates. The
symbol 0 is used as padding symbol to keep the length of each word encoding a grid
world to be the same.

An automaton representing one winning strategy for the follow game with the robots
start at the same position, and where the grid world does not contain any obstacles, is
shown in Figure 3. The intuition behind this automaton is that whenever Player 1 takes
a turn, the robots are on top of each other, and once Player 0 takes a turn, the x and
y-coordinates differ by at most one, which translates into a simple strategy for Player 0:
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Fig. 1: One segment of the safety game graph of one version of the follow game.

always move the robot on top of Player 1’s robot. Given such a setting, the objective of
the synthesis is to find a strategy that takes into account the parameters, and, regardless
of the value of the parameters, works for every possible grid world.
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Fig. 2: Automaton representing the grid world.

Distributed protocol example. Consider a distributed system which operates on n pro-
cesses that may enter critical section. Additionally, there is a single token in the system.
A process can only enter the critical section if it is in possession of the token. We are
interested in a controller which guarantees that at most one process is in the critical sec-
tion at a given time. The controller handles the resource allocation, i.e., decides which
process gets the token and how long the process keeps it. However, similar to the ring
token protocol, it can only move the token to the right. The processes can be idle (e.g.,
doing computations in non-critical sections), requesting a token, or in the critical sec-
tion. The controller has to give a process the token if the process is in requesting state
and the token passes the process. The obvious parameter for this protocol is the amount
of processes which are dependent on the system. With parameterization synthesis, it is
enough to only synthesize one controller which can function regardless of the number
of processes. Indeed, later in Section 5, we use this motivating example as one of the
benchmarks—we call it “resource allocation game”—and synthesize the controller.
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Fig. 3: Automaton representing one winning strategy for a simplified version of the follow game.
The legend for the symbols is as follows: 0 7→ [ 11 ], 1 7→ [ 00 ], 2 7→ S, 3 7→ [ 01 ], 4 7→ [ 10 ].
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3 Preliminaries

Let N be the set of natural numbers. Given two setsA andB, we denote their symmetric
difference by A	B = (A \B)∪ (B \A). Moreover, given a relation E ⊆ A×B, the
image of A under E is the set E(A) = {b ∈ B | ∃a ∈ A : (a, b) ∈ E}; similarly, the
preimage of B under E is the set E−1(B) = {a ∈ A | ∃b ∈ B : (a, b) ∈ E}.

Word, Languages, and Finite Automata. An alphabet is a nonempty finite set Σ of
elements, called symbols. A word is a finite sequence w = a1 . . . an with ai ∈ Σ for
i ∈ {1, . . . , n}. The empty word is the empty sequence, denoted by ε. The concatenation
of two words u = a1 . . . am and v = b1 . . . bn is the word u · v = a1 . . . amb1 . . . bn,
abbreviated as uv. We denote the set of all words over the alphabet Σ by Σ∗ and call a
subset L ⊆ Σ∗ a language.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, qI , δ, F ) consist-
ing of a nonempty finite set Q of states, an input alphabet Σ, an initial state qI ∈ Q, a
transition relation δ ⊆ Q × Σ × Q, and a set F ⊆ Q of final states. A run of an NFA
A on a word w = a1 . . . an is a sequence q0q1 . . . qn of states such that q0 = qI and
(qi−1, ai, qi) ∈ δ for i ∈ {1, . . . , n}. We call a run q0 . . . qn accepting if qn ∈ F . The
language of an NFA A, denoted by L(A), is the set of all words w ∈ Σ∗ for which an
accepting run of A on w exists. A language L ⊆ Σ∗ is called regular if there exists an
NFA A with L(A) = L. A deterministic finite automaton (DFA) is an NFA where the
transition relation is effectively a function δ : Q×Σ → Q.

A length-preserving transducer is a tuple T = (Q,Σ, qI , δ, F ) consisting of a
nonempty finite set Q of states, an input alphabet Σ, an initial state qI ∈ Q, a tran-
sition relation δ ⊆ Q × Σ × Σ × Q, and a set F ⊆ Q of final states. In con-
trast to NFAs, which process words, a transducer processes pairs of words that have
equal length (hence the name length-preserving). More precisely, a run of T on pair
(u, v) =

(
(a1 . . . an), (b1 . . . bn)

)
of words is a sequence q0q1 . . . qn of states such that

q0 = qI and
(
qi−1, (ai, bi), qi

)
∈ δ for i ∈ {1, . . . , n}. Similar to NFAs, the run is ac-

cepting if qn ∈ F . A transducer T defines a binary relation, denoted by R(T ), that
consists of all pairs (u, v) ∈ (Σ ×Σ)∗ for which T has an accepting run.

Reactive Synthesis and Safety Games. In order to synthesize controllers for reactive
systems, we follow an approach popularized by McNaughton [30], which translates the
system and specification in question into an infinite-duration two-player game and a
controller into a winning strategy. This approach can be easily applied to parameterized
systems under suitable encoding. Since we are interested in synthesizing systems from
safety specifications, the games we are faced with are so-called safety games [23]. The
basic building block of a safety game is an arena A = (V0, V1, E), which is a directed
graph with a countable vertex set V = V0 ] V1 and directed edge relation E ⊆ V × V .
The game has two players: Player 0, who represents the system, controls the vertices in
V0, and Player 1, who represents the environment, controls the vertices in V1.

Formally, a safety game is a triple G = (A, I, B) consisting of an arena A =
(V0, V1, E), a set I ⊆ V of initial vertices, and a set B ⊆ V of bad vertices. A safety
game is played as follows: initially, a token is placed on one initial vertex v0 ∈ I; then,
the player having control over the vertex moves the token along one of the outgoing
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edges to the next vertex. The process of moving the token is repeated ad infinitum,
resulting in an infinite sequence π = v0v1 . . . of vertices where v0 ∈ I and (vi, vi+1) ∈
E for all i ∈ N. We call such a sequence a play.

In a safety game, Player 0’s goal is to keep the token away from the bad vertices,
while Player 1’s goal is to reach them. Formally, a play π = v0v1 . . . is winning for
Player 0 if vi /∈ B for all i ∈ N. Conversely, it is winning for Player 1 if vi ∈ B for
some i ∈ N. Hence either Player 1 or Player 2 wins for each play.

In McNaughton’s framework, synthesizing a controller amounts to computing a
so-called winning strategy for Player 0. Formally, a strategy for Player 0 is a map-
ping σ : V ∗ × V0 → V such that

(
σ(v0 . . . vn), vn

)
∈ E for every finite play pre-

fix v0 . . . vn ∈ V ∗V0. We say that a play π = v0v1 . . . is played according to σ if
vi = σ(v0 . . . vi−1) for every i ∈ N such that vi ∈ V0. Moreover, a strategy is said to
be winning if every play that is played according to σ is winning.

In this paper, we do not compute winning strategies directly but instead learn a
proxy object, called winning set. Intuitively, a winning set is a set W ⊆ V of vertices
that contains all initial vertices, contains no bad vertex, and is a “trap” for Player 1 in the
sense that Player 1 cannot force the play to a vertex outside the winning set. Formally,
winning sets are defined as follows.

Definition 1 (Winning set). Let G = (A, I, B) be a safety game over the arena A =
(V0, V1, E). A winning set is a set W ⊆ V of vertices satisfying the following four
properties:

1. I ⊆W : all initial vertices are subsumed by the winning set (initial condition).
2. B ∩W = ∅: no bad vertex is contained in the winning set (bad condition).
3. E({v}) ∩W 6= ∅ for all v ∈ W ∩ V0: every vertex of Player 0 inside the winning

set has at least one outgoing edge connected to another vertex inside the winning
set (existential closedness).

4. E({v}) ⊆ W for all v ∈ W ∩ V1: the successors of every Player 1 vertex inside
the winning set is also inside the winning set (universal closedness).

A winning strategy for Player 0 can be derived from a winning set W in a straight-
forward manner: starting with a vertex v ∈ I (and, hence, v ∈W ), every time Player 0
is in control of the token, the strategy is to move the token to a successor vertex which
is also inside the winning set W . It is not hard to verify that this strategy is in fact win-
ning for Player 0 from every vertex in W : first, all initial vertices are contained in the
winning set, and every Player 0 vertex has a successor which is inside the winning set;
second, since Player 1 can never leave the winning set (due to universal closedness) and
since no vertex inside the winning set is bad, it is guaranteed that following the strategy
results in a winning play regardless of the moves of Player 1.

Regular safety games. We represent safety games using finite automata and transducers.
A regular arena is an arena AR = (L(AV0

), L(AV1
), R(TE)) where AV0

and AV1
are

NFAs and TE is a length-preserving transducer. A regular safety game is a safety game
GR = (AR, L(AI), L(AB)) where AI and AB are given as NFAs.
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Learner

Teacher

w ∈ R?

R = L(AH)?

Mem(w)

yes or no

Eq(AH)

yes or (no, w)

Fig. 4: General active automata learning framework. The teacher must be able to answer w ∈ R?
and must have some way to determine whether R = L(AH).

4 Algorithm

An active automata learning algorithm Suppose R is a regular language whose def-
inition is not directly accessible. Automata learning algorithms [5,39,27,10] automat-
ically infer a DFA AH recognising R. The setting of an active learning algorithm is
shown in Figure 4 assumes a teacher who has access to R and can answer the fol-
lowing two queries: (1) Membership query Mem(w): is the word w a member of R,
i.e., w ∈ R? (2) Equivalence query Eq(AH): is the language of AH equal to R, i.e.,
L(AH) = R? If not, it returns a counterexample w ∈ L(AH) 	 R. The learning al-
gorithm will then construct an DFA AH such that L(AH) = R by interacting with
the teacher. Such an algorithm works iteratively: in each iteration, it performs mem-
bership queries to get from the teacher information about R. Using the results of the
queries, it proceeds by constructing a hypothesis DFA AH and makes an equivalence
query Eq(AH). If L(AH) = R, the learning algorithm terminates and outputs AH .
Otherwise, the algorithm uses the counterexample w returned by the teacher to refine
the hypothesis DFA in the next iteration.

For completeness, we briefly describe how the learning algorithm computes hy-
pothesis automata. The foundation of the algorithm is the Myhill-Nerode theorem [36],
which states that the minimal DFA recognizing R is isomorphic to the set of equiva-
lence classes defined by the following relation: x ≡R y iff it holds that ∀z ∈ Σ∗ : xz ∈
R ↔ yz ∈ R. Informally, two words x and y belong to the same state of the minimal
DFA recognising R iff they cannot be distinguished by any suffix z. In other words, if
one can find a suffix z′ such that xz′ ∈ R and yz′ /∈ R or vice versa, then x and y
belong to different states of the minimal DFA.

The learning algorithm maintains a Boolean table where the rows are indexed by
X ⊆ Σ∗ and the columns indexed by Y ⊆ Σ∗. Each cell (x, y) of the table indicates
whether or not xy ∈ R. For x, x′ ∈ X , we write x ∼Y x′ iff xy ≡R x′y for all
y ∈ Y . Note that ∼Y is an equivalence relation over X , and that x ∼Y x′ iff the rows
indexed by x and x′ contain the identical Boolean values. The table is consistent iff for
all x, x′ ∈ X and x 6= x′, it holds that x 6∼Y x′. The table is closed iff for all x ∈ X
and a ∈ Σ, there exists x′ ∈ X such that xa ∼Y x′. By the Myhill-Nerode theorem,
the table determines a DFA when it is consistent and closed: the states of the DFA are
{[x]Y : x ∈ X} (where [·]Y is the equivalence classes induced by ∼Y ), the accepting
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states are {[x]Y : x ∈ X ∩ R}, and the transition function δ : [X]Y × Σ → [X]Y is
defined by δ([x]Y , a) = [xa]Y . Note that this DFA is minimal as every two states of it
can be distinguished by some word in Y by the definition of consistency.

During the learning process, the algorithm fills and extends the table through mem-
bership queries until the table is consistent and closed. The algorithm then determines a
hypothesis automaton AH from the table and makes an equivalence query Eq(AH). If
the teacher returns a counterexample w, the algorithm will perform a binary search over
w using membership queries to find a suffix y of w and extend Y to Y ∪ {y}, which
will identify at least one more state for R by the Myhill-Nerode theorem.

Proposition 1 ([39]). The learning algorithm in Figure 4 finds the minimal DFA AH

for the target regular language R using at most n equivalence queries and n(n +
n|Σ|) + n logm membership queries, where n is the number of state of H and m
is the length of the longest counterexample returned from the teacher.

A teacher for learning winning set Let GR = (AR, L(AI), L(AB)) be a regular
safety game with regular arenaAR = (L(AV0), L(AV1), R(TE)). We describe below a
teacher to learn a regular winning set for GR. Since GR can have multiple winning sets,
we aim to learn the maximal winning set, which, if exists, is unique as winning sets are
closed under union.

Theorem 1. The target object in Figure 4, the maximal winning set, is unique.

Membership query. To answer a membership query Mem(w), the teacher needs to
check whether Player 1 can force Player 0 to visit a bad vertex from vertex w. Since
the transition relation is length-preserving, only a finite number of vertices (i.e. at most
|Σ||w| vertices) can be reached from vertex w. Therefore, this check can be done by
solving an induced finite safety game with Iw = {w} as the set of initial vertices and
Bw = {w′ ∈ L(AB) : |w′| = |w|} as the set of bad vertices. Safety games over finite
graphs are known to be decidable [23], thus making our membership query decidable.

Equivalence query. To answer an equivalence queryEq(AH), the teacher simply checks
that all conditions in Definition 1 are fulfilled by the hypothesis DFA AH . Note that a
DFA satisfying these conditions serves as a proof for safety even if it does not recog-
nize the maximal winning set. The pseudo code of the equivalence check can be found
in Algorithm 1. Given an equivalence query Eq(AH) by the learner, the teacher first
checks if L(AI) 6⊆ L(AH) and if there is v ∈ L(AI) \L(AH), the teacher returns v as
a counterexample.

Secondly, the teacher checks whether L(AB) ∩ L(AH) 6= ∅. If there is a v ∈
L(AB) ∩ L(AH), then the teacher returns v as a counterexample.

According to the third part of Definition 1, the teacher checks if there exists v ∈
L(AH) ∩ L(AV0) and R(TE)({v}) ∩ L(AH) = ∅. Here either v should be excluded
from the hypothesis or one of its successors should be included. The teacher then
makes membership queries to check if v should be excluded: if Mem(v) returns “no”,
the teacher returns v as counterexample. Otherwise, the teachers returns some u ∈
R(TE)({v}) as a counterexample such that Mem(u) is “yes”.
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Algorithm 1: Resolving an equivalence query for regular safety games
Input: GR = (AR, L(AI), L(AB)) over the regular arena

AR = (L(AV0), L(AV1), R(TE)) and an hypothesis DFA AH .

1 if L(AI) \ L(AH) 6= ∅ then
2 Find some v ∈ L(AI) \ L(AH) and return (“no”, v)

3 if L(AH) ∩ L(AB) 6= ∅ then
4 Find some v ∈ L(AH) ∩ L(AB) and return (“no”, v)

5 if there is v ∈ L(AV0) ∩ L(AH) such that R(TE)({v}) ∩ L(AH) = ∅ then
6 if Mem(v) is “yes” then
7 Find some u ∈ R(TE)({v}) such that Mem(u) is “yes”
8 return (“no”, u)
9 else

10 return (“no”, v)

11 if there is v such that v ∈ L(AV1) ∩ L(AH) and R(TE)({v}) 6⊆ L(AH) then
12 if Mem(v) is “yes” then
13 Find some u ∈ R(TE)({v}) \ L(AH) and return (“no”, u)
14 else
15 return (“no”, v)

16 return “yes”

Lastly, the teacher checks if there exists v ∈ L(AH) ∩ L(AV1) and R(TE)({v}) 6⊆
L(AH). Again, either v should be excluded or one of its successors should be included.
If Mem(v) returns “no”, the teacher returns v as a counterexample. Otherwise, the
teacher returns some u ∈ R(TE)({v}) \ L(AH) as a counterexample.

Since the teacher checks all conditions in Definition 1 for an equivalence query,
if the teacher replies “yes” then the hypothesis DFA indeed recognizes a winning set.
Otherwise, the teacher will pinpoint a counterexample violating the definition. Further-
more, observe that the counterexamples pinpointed by the teacher are located in the
symmetric difference of the candidate language and the maximal winning set. There-
fore, if the maximal winning set can be recognized by a DFA of n states, the learning
algorithm will terminate in n iterations by Proposition 1. We summarize the soundness
and completeness of our learning method in the following theorem.

Theorem 2. Given a regular safety game GR = (AR, L(AI), L(AB)), the learning
algorithm in Figure 4 computes a winning set on termination. Furthermore, when the
maximal winning set W is regular, the algorithm will terminate in at most n iterations
where n is the size of the minimal DFA of W .

5 Case Studies and Experiments

In this section, we provide some case studies as benchmarks and report the results of
the experiments based on given benchmarks. In order to asses the performance of our
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tool, L∗-PSynth, we compare it with three existing tools that are able to solve safety
games over infinite graphs: SAT-Synth, RPNI-Synth [35] and DT-Synth [34]

Tools. The tools SAT-Synth and RPNI-Synth both compute a winning set based on learn-
ing finite automata with a teacher that answers to equivalence queries. In contrast to
L∗-PSynth—which solves regular safety games—these tools are able to solve rational
safety games, which is a more general type of safety games, since in these games, edge
relations may be represented by non length-preserving transducers. Furthermore, the
learner of SAT-Synth uses a SAT solver to learn automata, while RPNI-Synth is based
on the popular RPNI learning algorithm [37].

The tool DT-Synth uses formulas in the first-order theory of linear integer arithmetic
to encode safety games. It uses a learning algorithm that learns from data in the form of
Horn clauses. The teacher in this tool was built on top of the constraint solver Z3 [31].

L∗-PSynth is implemented with the use of automata libraries and an existing imple-
mentation of an L∗ learner[16]. The teacher is implemented in Java and uses existing
automata methods to implement the algorithms from Section 4. The input format is a
text file which encodes a regular safety game GR = (AR, L(AI), L(AB)).5

The teacher for L∗-PSynth is an extension of the one used by SAT-Synth, RPNI-
Synth, and DT-Synth: it also answers to membership queries in order to accommodate
for the additional queries the learner might ask, since, beside equivalence queries, our
learner also asks membership queries.

Benchmarks. Some of the benchmarks are taken from [35] with some modification to fit
the framework of regular safety games. In particular, we adjust the arenas of the game,
from infinite arenas into arenas with arbitrary but bounded size. The other benchmarks
are either known games which are translated to a regular safety game, e.g., the Nim
game [12], or inspired by some processes that happen in real world, such as resource
allocation protocols or the movement of an autonomous robotic vacuum cleaner. The
list of benchmarks is as follows:

Box game: A robot moves in an two-dimensional grid world of size n×mwith n,m ≥
3.6 Player 0 controls the vertical movement of the robot while Player 1 controls the
horizontal movement. Player 0 wins if the robot stays within a horizontal stripe of
width 3 around the middle of the arena. We can consider this kind of game as an
abstraction of some autonomous control system, e.g., a controller that ensures a
drone stay in some range of altitude.

Control unit game: Consider a system that controls the temperature of n power plants
within a certain safe level. We can model this as a game between two players, 0
and 1. Player 0 acts as the controller who can decrease the temperature of some
plant (e.g., by reducing the boiler temperature.) Player 1 acts as the environment
who may increase the temperature of some plant (e.g., weather changes, cooling
system malfunction). The game is played in a sequential fashion, i.e., Player 0 and

5 Code and benchmarks are available at https://github.com/lstarsynth/lstar-psynth.
6 The encoding in the benchmarks use a grid world of size 2n× 2n which can be easily reduced

to n×m
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Player 1 can alternately increase or decrease the temperature of a plant. Player 0
wins if none of the plants reach critical temperature.

Diagonal game: A variation of the Box game where Player 0 again controls the vertical
movement and Player 1 controls the horizontal movement of a robot in a bounded
two-dimensional grid world. Player 0 wins if the robot stays within a two cells of
the diagonal in the arena.

Evasion game: Two robots are moving in an bounded discrete two-dimensional grid
world of size n×m with n,m ≥ 3. Each Player is in control of one robot and they
can move their respective robot at most one cell in any direction (either vertically
or diagonally.) If the system moves its robot outside of a bound it automatically
wins7. Player 0 wins if Player 1 never moves its robot on top of Player 0’s robot.

Follow game: A variation of the evasion game where Player 0 wins if it manages to
keep its robot within a Manhattan distance of two cells to Player 1’s robot.

Nim game: The standard Nim game consists of three piles of chips and two players
taking alternating turns. On each turn, each player must remove one chip, and may
remove any number of chips so long as they all come from the same pile. The
player who removes the last chip wins the game8. The game is modified to be an
infinite duration game by adding an infinite loop at the end of the game. A winning
strategy is computed for all winning starting positions which are determined by the
Nim sum. More information on the Nim game and its winning strategy can be found
in [21].

Resource allocation game: This game involves a single token and n processes. Each
process has three states: idle, requesting, and in critical section. A process can
move from a requesting state to the critical section if and only if it has the token. If
a process is in a requesting state, it is guaranteed by design of the game, that it will
eventually get the token. Player 0 controls the token and can either: (i) move the
token from one process to another, or (ii) keep it in the same place if the process is
in the critical section, or if there are only idle processes. Player 1 can change the
state of a process from idle to requesting or vice versa. Additionally, Player 1 can
move a process to the critical section if the process is in control of the token. Once
a process enters the critical section, it may stay in the critical section even without
the token. Player 0 wins if at all times, there is no process in the critical section
without the token.

Robot vacuum cleaner game: A vacuum cleaner robot and a human move in an two-
dimensional grid world of size 2n×2n with n ≥ 2. Player 0 controls the movement
of the robot and Player 1 controls the movement of the human. Player 0 wins if the
robot never bumps into the human, and if the human tries to step on the robot, it
moves away.

Solitary box: Another variation of the Box game where only Player 0 controls the
vertical and horizontal movement of the robot.

7 The original version of the evasion game is played in an infinite grid world, thus, making one
valid strategy to always move into one direction, which resembles Player 0 moving out of
bound.

8 This version of winning condition is called “misère play condition”, in which the last player
making a move loses. Nim can also be played with “normal play condition”, i.e., the last player
making a move wins.
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Table 1: Results on the benchmarks on L∗-PSynth, SAT-Synth and RPNI-Synth. “Size” measures
the size of the final automata synthesized by the algorithms. “—” indicates a timeout after 300s.
“N/A” corresponds to not supported by the tool.

L∗-PSynth SAT-Synth RPNI-Synth DT-Synth

Game Time in s Size Time in s Size Time in s Size Time in s

Box 1.62 5 6.83 4 1.92 7 5.76
Control unit 0.40 3 185.50 5 1.13 5 N/A
Diagonal 0.68 3 113.52 7 1.62 7 139.36
Evasion 4.77 11 122.41 7 2.52 11 10.83
Follow 6.71 16 207.12 16 18.53 16 31.67
Nim 3.64 4 ———— 7.12 5 N/A
Resource allocation 0.65 4 24.00 3 3.77 4 N/A
Robot vacuum cleaner 1.21 3 ———— ———— ———
Solitary box 1.14 4 5.71 4 0.30 4 1.89

Results. The result of the benchmarks on L∗-PSynth, SAT-Synth, RPNI-Synth and DT-
Synth is shown in Table 1. In this table, we report the time each tool took to synthesize an
automaton that encodes a winning set, as well as the size of the respective automaton9.
We conducted the experiments on an Intel Xeon E7-8857 v2 CPU with 4 GB of RAM
running a 64-bit Debian operating system. From the results, we can see that L∗-PSynth
was able to solve all games, whereas RPNI-Synth and DT-Synth were not able to solve
the robot vacuum cleaner game, and SAT-Synth did not solve the robot vacuum cleaner
game and the Nim game. Moreover, the aggregated runtime to solve all 9 games for L∗-
PSynth is 20.82 seconds compared to RPNI-Synth which took 36.91 seconds to solve
8 games in total. SAT-Synth was able to solve 7 games taking 665.09 seconds. Finally,
DT-Synth was only able to solve 5 games within 189.51 seconds—this is partly due to
the inability of DT-Synth encoding to represent three benchmarks: control unit, Nim,
and resource allocation. Given the results, it is not surprising that L∗-PSynth was able
to outperform the other tools, since the benchmarks are more well suited for regular
safety game framework. On the other hand, if we consider the size of the solutions,
RPNI-Synth performed worst, with only 2 out of 9 solutions that are at least as small
as those produced by other tools, followed by SAT-Synth 5 out of 9 games. L∗-PSynth
performed best with 6 out of 9 solutions that are at least as small as others10. Again,
this is not a surprising result with respect to RPNI-Synth performance, since it was not
tailored to find small solutions, whereas SAT-Synth was designed to find such solutions.
However, although L∗-PSynth was also not tailored to optimize the solution size11, it
produced better solutions compared to SAT-Synth. From the experiments, it appears that
L∗-PSynth performs well on benchmarks where a winning strategy can be synthesized
by only looking at small n in the parameterization. If larger n is needed in order to find

9 Apart from DT-Synth, since instead of automata, it produces witnesses as decision trees.
10 Including one case (robot vacuum cleaner) in which the other two tools timed out.
11 In spite of the fact that Angluin’s algorithm computes the minimal DFA for a given target

language, it is not necessarily encoded by a small automaton.
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a winning strategy, the runtime significantly increases (up to 5-10 times as much time
needed) as in the case for the evasion, follow and Nim game. We believe this correlates
to the runtime of Angluin’s algorithm which is strongly dependent on the length of
words and counterexamples considered in a given run, which increases as n increases.

Parameterization in DT-Synth. Encoding the benchmarks as safety games in DT-Synth
is not straightforward, and, in some cases, not possible (i.e., with control unit, Nim, and
resource allocation.) This is because, in those corresponding cases, either the games
specifically parameterize the amount of processes, or perform bit-sensitive operations.
For the rest of the games that are played on arenas of the size n × m, this can be
represented in DT-Synth by letting the environment pick two additional variables, n and
m. These variables further constrain the initial states and modify the transition system
accordingly, i.e., enable/disable transitions, based on their value.

6 Related work

In the context of safety games, a constraint-based approach for solving safety games
over infinite graphs [8,26] and various learning approaches for finite graphs and infinite
graphs have been proposed [34,35,32]. Similar to the framework of Neider et al. [35]
we encode safety games symbolically using the idea of regular model checking. Their
work considers rational safety games which differ with our regular safety games in the
definition of the edge relation. The edge relation in our framework is encoded by length-
preserving transducers while rational safety games allow a more general type of trans-
ducer. The framework for solving rational safety games is implemented in two tools,
SAT-Synth and RPNI-Synth. On the other hand, the framework in another learning-based
approach, which is implemented in the tool DT-Synth, does not fix the representation
of safety games and uses formulas in the first-order theory of linear integer arithmetic
to encode them [34]. This leads to some encoding difficulties with parameterized sys-
tems as discussed in Section 5. The learner in both frameworks learns passively from
a sample and can only ask the teacher equivalence queries while the algorithm we de-
sign is able to employ a learner which is allowed to ask membership queries in addition
to equivalence queries. All frameworks mentioned above operate on safety games over
infinite-state arenas, whereas we consider infinitely many finite graphs due to the nature
of length-preserving transducers. However, this is not a restriction as we can parame-
terize the value that goes towards infinity and finding a strategy which works for every
n also gives us a strategy for every specific place in the infinite-state arena for an appro-
priately chosen n. There might be games which will not have a strategy for finite graphs
(see evasion game in Section 5) where we extend transitions to go “out of bound” of
the parameter and always stay safe. This works because there is a way for one robot to
catch the other then there is going to be a finite example on grid world with a specific
size.

The framework of regular model checking is used in many different areas of re-
search to verify different properties such as safety [16,24,35,33] or liveness [29,38,48].
In particular, for verification of those properties in parameterized systems regular model
checking has seen successful application [16,29]. Furthermore, the approaches in [16,29]
also employ Angluin-style L∗-learning to verify properties of parameterized systems.
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7 Conclusion

In this paper, we have developed a learning-based methodology for synthesizing param-
eterized systems from safety specifications. Our approach reduces this synthesis prob-
lem to a two-player safety game in an infinite arena, where synthesizing a controller
amounts to computing a winning strategy (a winning set) for the player embodying the
system. Inspired by Regular Model Checking and the work by Neider and Topcu, we
encode sets of vertices by means of finite automata and edges using length-preserving
transducers. This encoding allows us to utilize Angluin’s popular automata learning
algorithm, which significantly reduces the complexity of the underlying learning prob-
lem as compared to the earlier work by Neider and Topcu (the former being polynomial
while the latter being NP-complete). In fact, our experimental evaluation shows that a
prototype of our approach is very effective in synthesizing various types of parameter-
ized systems, including process resource allocation and robotic motion planning.

There exist various interesting directions for future work. First, we plan to extend
our framework to liveness properties, for example, by learning ranking functions rather
than winning sets [20,19]. Second, we would like to consider game arenas with un-
countably many vertices, which often arise in the context of cyber-physical systems.
One possible approach to this problem would be to encode such arenas by means of
ω-regular languages and ω-transducers, and then use existing learning algorithms for
ω-automata (e.g., Büchi automata) to learn winning sets [6]. Finally, we want to modify
our approach such that it learn a strategy directly rather than a proxy object (i.e., a win-
ning set). This would allow us to also optimize for other criteria such as size or number
of operations required to compute the next move.

Acknowledgement

This work was partially funded by the ERC Starting Grant AV-SMP (grant agreement
no. 759969) and MPI-Fellowship as well as the DFG grant no. 434592664.

References

1. Automated fault localization for c programs. Electronic Notes in Theoretical Computer Sci-
ence

2. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking. In: CAV
(2002)

3. Abdulla, P.A.: Regular model checking. STTT 14(2), 109–118 (2012)
4. Abdulla, P.A., Haziza, F., Holı́k, L.: Parameterized verification through view abstraction.

STTT 18(5), 495–516 (2016)
5. Angluin, D.: Learning regular sets from queries and counterexamples. Information and Com-

putation 75(2), 87–106 (1987)
6. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci. 650, 57–72

(2016)
7. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent systems.

Inf. Process. Lett. 22(6), 307–309 (1986)



Parameterized Synthesis with Safety Properties 17

8. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based approach to
solving games on infinite graphs. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014 (2014)

9. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder, J.: Decidability
of Parameterized Verification. Synthesis Lectures on Distributed Computing Theory, Morgan
& Claypool Publishers (2015)

10. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA. In: IJCAI.
pp. 1004–1009

11. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree) model
checking. STTT 14(2) (2012)

12. Bouton, C.L.: Nim, a game with a complete mathematical theory. Annals of Mathematics
3(1/4), 35–39 (1901), http://www.jstor.org/stable/1967631

13. Camacho, A., Muise, C.J., Baier, J.A., McIlraith, S.A.: LTL realizability via safety and reach-
ability games. In: Proceedings of the Twenty-Seventh International Joint Conference on Arti-
ficial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. pp. 4683–4691 (2018)

14. Chatain, T., David, A., Larsen, K.G.: Playing games with timed games. In: 3rd IFAC Confer-
ence on Analysis and Design of Hybrid Systems, ADHS 2009, Zaragoza, Spain, September
16-18, 2009. pp. 238–243 (2009)

15. Chen, Y., Clarke, E.M., Farzan, A., Tsai, M., Tsay, Y., Wang, B.: Automated assume-
guarantee reasoning through implicit learning. In: Computer Aided Verification, 22nd Inter-
national Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings. pp. 511–
526 (2010)
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